
GlassBox

A New Simulation
Architecture

What is GlassBox?

• A new data-driven simulation engine for Maxis games

• Learn key lessons from the past

• Power of data-driven simulation
• Power of putting logic in game objects (The Sims)

• Being used to ship SimCity

Why?

• Bet for the future

• Adapt to a world dominated by the internet and non-PC devices

• Digital downloads and IAP vs. retail boxed product and one or
two expansions

• DLG = Downloadable Gameplay

• Next Generation simulation

Why?

• Get to the gameplay more quickly

• Build and deploy sim games more quickly
• Easier iteration for higher quality
• Allow significant post-ship updates

• Build ecosystems of simulation games

• Deploy same gameplay across multiple devices

Simulation Type

• Our past games have been primarily statistical

• Heavily random-number based
• Players good at rationalising random or even buggy behaviour as smart AI

• Good approach with limited CPU resources

• But, makes it hard for player to understand what's going on with their sim
(SimCity 4 traffic system)

• Leads to gaps between visualisation and behaviour (Cars fading in and out in
SimCity)

• We can do better

GlassBox Basics

• Resources + Units + Maps + Globals

• Combined with Rules

• In a Box

• = $$$ Simulation!

Resources

• The basic currency of the game

• Oil, coal, crops, wood, water...
• Money, electricity, labour, pollution

• Resources come in bins:

• Bin of resource R, has capacity C
• Bin value is an integer, 0..C
• Capacity is fixed

$ $
$ $

$

Citizen

Happiness

Money

Goods

Sickness

Taxes

Water

Trash

Electricity

Resources

Units

Maps

Globals

Rules

Box

Units

• Represent things

• houses, factories, even people

• A unit has state

• A collection of resource bins

• Also a well-defined spatial extent

• Bounding volume
• Simulation footprint

Resources

Units

Maps

Globals

Rules

Box

Units

Resources

Units

Maps

Globals

Rules

Box

Food 20/30

People 4/10

Oil 40/100

Cars 2/4

Petrol 0/5

Maps

• Maps represent resources in the environment

• Coal, oil, forest
• But also air pollution, land value, desirability
• Resources are limited

• Simple uniform size grids

• Each cell is a resource bin

• Units interact with maps through their footprint

Resources

Units

Maps

Globals

Rules

Box

Maps

Resources

Units

Maps

Globals

Rules

Box

Maps

Resources

Units

Maps

Globals

Rules

Box

Globals

• Just a global set of resource bins

• Values associated with the game as a whole

• Next!

Resources

Units

Maps

Globals

Rules

Box

Rules

• We have the nouns, rules provide the verbs

• Rules operate on resources:

• Move resources from one place to another
• Convert resources to other resources
• Have inputs and outputs

• Attached to the entity that runs them

Resources

Units

Maps

Globals

Rules

Box

Rule Example

• Money is converted to wood,
if a person is available

• Applied in its entirety

• Only if the end result is valid
• A rule can be applied multiple

times

rule harvestWood
 Money in 10
 Wood out 2

 People in 1
 People out 1
end

Resources

Units

Maps

Globals

Rules

Box

Rule Example

• Money is converted to wood,
if a person is available

• Applied in its entirety

• Only if the end result is valid
• A rule can be applied multiple

times

rule harvestWood
 Money in 10
 Wood out 2

 People in 1
 People out 1
end
 applyCount 1 10
end

Resources

Units

Maps

Globals

Rules

Box

Unit Rules

• Different targets:

• Local (unit) bins
• Global bins
• Map cells covered by the unit
• Bins in nearby units

• Can chain to other rules

• Trigger game actions

Resources

Units

Maps

Globals

Rules

Box

Unit Rule Example

unitRule mustardFactory
 rate 10

 global Simoleans in 1

 local YellowMustard in 6
 local EmptyBottle in 1
 local BottleOfMustard out 1
end

Resources

Units

Maps

Globals

Rules

Box

Unit Rule Example

unitRule mustardFactory
 rate 10

 global Simoleans in 1

 local YellowMustard in 6
 local EmptyBottle in 1
 local BottleOfMustard out 1
end

• Run every 10 ticks

• Convert materials to
product

Resources

Units

Maps

Globals

Rules

Box

+

Unit Rule Example

unitRule mustardFactory
 rate 10

 global Simoleans in 1

 local YellowMustard in 6
 local EmptyBottle in 1
 local BottleOfMustard out 1
end

• Run every 10 ticks

• Convert materials to
product

Resources

Units

Maps

Globals

Rules

Box

Unit Rule Example

unitRule mustardFactory
 rate 10

 global Simoleans in 1

 local YellowMustard in 6
 local EmptyBottle in 1
 local BottleOfMustard out 1
end
 map Pollution out 5
end

• Run every 10 ticks

• Convert materials to
product

• Emit some pollution

Resources

Units

Maps

Globals

Rules

Box

Unit Rule Example

unitRule mustardFactory
 rate 10

 global Simoleans in 1

 local YellowMustard in 6
 local EmptyBottle in 1
 local BottleOfMustard out 1
end
 map Pollution out 5
end
 successEvent effect smokePuff
 successEvent audio chugAndSlurp
end

• Run every 10 ticks

• Convert materials to
product

• Emit some pollution

• Game feedback

Resources

Units

Maps

Globals

Rules

Box

Unit Rule Example

unitRule mustardFactory
 rate 10

 global Simoleans in 1

 local YellowMustard in 6
 local EmptyBottle in 1
 local BottleOfMustard out 1
end
 map Pollution out 5
end
 successEvent effect smokePuff
 successEvent audio chugAndSlurp
end

• Run every 10 ticks

• Convert materials to
product

• Emit some pollution

• Game feedback

• Chaining
 onFail buyMoreMustard
end

Resources

Units

Maps

Globals

Rules

Box

Map Rules

• Operate on entire map, or a collection of random cells

• Run resource rule per cell

• Can reference multiple maps at once

• Or, perform more specialised operations:

• Diffusion (controlled by a second map)
• Advection (e.g., by wind direction)

Resources

Units

Maps

Globals

Rules

Box

Map Rule Example

• Grass will grow only
where there’s soil, water,
and nutrients

• Water and nutrients must
be replenished

mapRule growGrass
 rate 200

 map Soil atLeast 20

 map Water in 10
 map Nutrients in 1

 map Grass out 5
end

Resources

Units

Maps

Globals

Rules

Box

• Everything that makes up a game

• Game Scripts

• Play Area and other properties
• Unit types, Map types, Global bins
• Rule scripts

• Game State

• Bin and cell values
• Unit locations

A Box

Resources

Units

Maps

Globals

Rules

Box

Key ideas

• Units contain their own simulation logic

• You can drop in new units with new behaviours
• Units can be combined to get aggregate behaviour

• Iteration, iteration, iteration

• Hotloading for everything
• Have an idea, implement, test, evaluate, ASAP

• Data-driven

• Entirely defined by rule scripts and property lists

But wait... there’s more

• This is enough to build a basic resource-based simulation game.

• Have had fun building various mini games
• Work in progress for future

• But not enough for SimCity-style sims

• Need: Paths + Zones + Agents

Paths

Paths

• Points connected by Segments make up
Paths make up Path Sets

• Fully 3D, spline-based, rich set of operations

• Typically player created

• Curvy roads!

• But also: power lines, water pipes, flight paths

Power

Transport

Water

Zones

• Cover some well-defined area

• Run zone rules:

• Create new units
• Upgrade/downgrade existing units
• Destroy units

• Provide "gardening" aspect of simulation

Zones

Zones

Zones

Zones

Zone Rule Example

• Try to create three houses a day

• Only if we have enough builders

• Only where the zone doesn’t
overlap with forest

zoneRule developHouses
 timeTrigger Day 0.5

 sample random -count 3

 test global Builders greater 5
 test map Forest is 0

 createUnit -id Bungalows
end

Agents

• Carry resources from one unit to another

• Each has a set of resource bins
• Do not run rules (10,000s of agents)

• Controlled by Transport Handlers

• Agents handed over when emitted from unit
• Handler responsible for delivering to a destination unit

Agents

• Created by unit rules

• Each agent is given a destination

• Home, Work, Fire, Sickness

• Units can have sinks advertising the
corresponding destinations

• Creation rule can set simple destination
instructions

Unit Agent Rule

unitRule goToWork
 options -sendTo Work -via Car -using Road

 local People in 2
 agent People out 2
end

Unit Agent Rule

unitRule goToWork
 options -sendTo Work -via Car -using Road

 local People in 2
 agent People out 2
end

unitRule goToWork
 options -sendTo Work -or Park
 -switchTo Home 10
 -repeatAfter 10
 -via Car -using Road

 local People in 2
 agent People out 2
end

Transport Handlers

• Predominantly path-oriented

• Vehicles driving along paths
• Resource flow through pipes

• But also

• Helicopters, boats, aircraft
• Free-routing sims

Path-based Routing

• Virtual Distance Field

• D*-Lite based algorithm - wavefront updates
• Calculates cost-to-nearest-sink at vertices
• Steer towards vertex with least cost
• No per-agent routing info

• Distance modified by

• Sink strength: advertises a capacity
• Modifiers such as congestion and speed limit

Virtual Distance Field

Virtual Distance Field

People 0/5

Virtual Distance Field

People 0/5

People 10/10

Virtual Distance Field

People 0/5

People 0/10

Virtual Distance Field

People 0/5

People 0/10

Virtual Distance Field

People 0/5

People 0/10

People 0/5

Virtual Distance Field

People 0/5

People 0/10

People 0/5

Virtual Distance Field

People 2/5

People 0/10

People 0/5

Virtual Distance Field

People 2/5

People 0/10

People 0/5

Virtual Distance Field

People 2/5

People 0/10

People 0/5

Virtual Distance Field

People 2/5

People 0/10

People 0/5

Virtual Distance Field

People 5/5

People 0/10

People 0/5

Virtual Distance Field

People 0/5

People 0/10

People 0/5

GlassBox Simulation

• Resources

• Units + Maps + Globals + Zones

• Rules for each

• Paths + Agents

Online

• GlassBox built from ground up to support online

• Data-driven means small downloads
• Small upload bandwidth

• Game save is in the cloud: continuous save

• Play anywhere

• Rich online presence

Multiplayer

• Boxes communicate by sending packages back and forth

• Online form of agents

• Can host boxes inside other boxes

• SimCity regions are just another box

Online Buzzwords

• Asynchronous server model

• No reliance on dedicated live server running to support your play session
• Graceful degradation if we have server issues

• All-HTTP REST API

• Any cloud service supported: S3, EC2, etc.

Physics

• Assumed that units can move at will, and will be controlled by a
physics simulation

• Simulator built around this assumption

• Avoid sim chugging to a halt during disasters

Visualisation

• Rather than visualise game statistics, show actual game state

• Show cars instead of traffic density
• Actual people in house rather than expected

• Ensure cause and effect is obvious:

What You See Is What You Sim

Conclusion

• The GlassBox simulation architecture is built out of very simple
pieces

• But, the emergent behaviour is rich

• Now for SimCity...

